
CS747-Assignment 1

Vansh Kapoor
200100164

1 Task 1

1.1 UCB Algorithm

I used the below implementation of the UCB-Algorithm. I first initialize the starting time step
t = 0. give_pull function defined here first looks if there is any arm that hasn’t been pulled yet
and pulls the first arm it finds satisfying the condition, else it pulls the arm having the highest
Upper Confidence Bound (UCB).

1



After every arm pull we update the self.counts, self.values and self.ucb according to arm
pulled and the reward received from the arm. self.ucb is updated with the sum of its expected
mean reward and exploration bonus.

Figure 1 shows the variation of expected cumulative regret with Horizon for UCB algorithm.
From Figure 1 we can verify that regret is sub-linear as expected, in fact the plot matches are
expected result that Regret RT is of O(logT ). But when compared to the other algorithms below
the expected cumulative regret achieved is higher.

Figure 1: Regret VS Horizon for UCB algorithm

1.2 KL-UCB Algorithm

I have implemented klucb as a recursive algorithm that uses a sort of binary search to find KL-Upper
Confidence Bound of each of the arms. Here I have set the parameter c = 0 as as I observed that
this parameter setting brings down my regret. I have also set the default sensitivity sens= e−12

for KL− UCB (I am using a sensitivity of = e−6) and have used an error tolerance of e−5

2



For implementing the function kl to calculate the KL-Divergence between its arguments. I
covered all the edge cases that could occur while calling the function(e.g. the numerator of the
argument given to the log function is zero)

Figure 2 shows the variation of expected cumulative regret with Horizon for KL-UCB algorithm.
From Figure 2 we can clearly conclude that the regret is logarithmic, i.e., RT is of O(logT ). We
also observe that the cumulative regret achieved for a given horizon is lower than that of UCB,
which matches our theoretical expectations (It asymptotically achieves Lia and Robbins bound).

Figure 2: Regret VS Horizon for KL-UCB algorithm

1.3 Thompson Sampling

For implementing Thompson Sampling, I added an extra parameter self.sampling that contains
the sampled values from the Beta function (arguments given by the successes and failures of the
particular arm) from each of the arms. I have then selected the arm having the highest sampled
value. I have initialized all my variables(self.counts, self.values and self.sampling) as zero
arrays.

3



Figure 3: Regret VS Horizon for Thompson Sampling

Figure 3 shows the variation of expected cumulative regret with Horizon for Thompson Sampling.
From Figure 3 we can observe that the regret is clearly sub-linear as expected, in-fact we observe
that it achieves a regret lower than KL-UCB! It can be thus concluded Thompson sampling is the
best among the three algorithms.

4



Task 2

1.4 Part A

If the mean of one of the arms is very small, we mainly rely on exploration bonus in calculating
the UCB value for the arm with low mean reward. But the exploration bonus grows root over of
logarithmic with time and hence we quickly learn about the approximate true means of the arms.
As the p2 is increased we expect the regret to increase for a fixed horizon as it now takes more time
steps to learn about the true mean of the arms and hence pulls the non-optimal arm more often,
thus increasing regret for the same horizon. As the value of p2 is further increased we also expect a
drop in regret since if the mean rewards of the arms get closer and closer the expected regret that
we obtain at each time step is small even when we pull the non-optimal arm.

Figure 4: Effect of Difference Between Means of Arms On Regret by UCB Algorithm

1.5 Part B

Figure 5 shows how the Lia and Robbins bound constant = p2 log p2
p2+0.1+(1−p2) log 1−p2

0.9−p2 behaves
as p2 increases. The envelope of Regret curve in Figure 6 is approximately the plot of Figure 5 up
to a constant! (X-axis in Figure 5 can be interpreted as mean reward of arm 2)
Since Horizon is kept constant throughout, we can understand the approximate behaviour of regret
obtained by KL-UCB. The random unexpected spikes could be attributed to the finite horizon we
are considering instead of an infinitely large horizon (since KL-UCB satisfies the Lia and Robbins
bound asymptotically) or due to the randomness. As an approximation: Regret increases, reaches
a maximum value near 0.4 and then decreases.

The plot for KL-UCB and UCB show some kind of similarity (UCB plot seems more random),

5



but the regret value is higher for UCB than KL-UCB which is expected. As the value of
the mean reward for arm p2 increases, the regret accumulated initially increases. AS p2 increases
further, there is a sharp dip near p2 = 0.2, then it peaks near p2 = 0.4 and has another local
minima near p2 = 0.8. One important point to note is that both the plots have their Regret
maximized near p2 = 0.4, which is where the Lia and Robbins Bound constant obtains its
maximum value.

Figure 5: Constant factor in Lia and Robbins bound

Figure 6: Variation of Regret with p2 keeping Delta constant for UCB and KL-UCB algorithms

6



Task 3

Let us define p to be the probability of giving a faulty output. Let the Belief of getting a reward
at m time step m be Bm for a particular . Then,
(i)If reward at time step m+ 1 is 1

Bm+1(w) ∝ Bm(w)(
p

2
+ (1− p)w)

(ii)If reward at time step m+ 1 is 0

Bm+1(w) ∝ Bm(w)(
p

2
+ (1− p)(1− w))

By observation, we get Bm(w) = Betast+1,ft+1(
p
2 + (1− p)w) dx

Let X Random Variable having a Beta distribution with the above mentioned parameters, we now
have sample a Random Variable Y s.t.

Y =
X − p

2

1− p

Note:fX(w) = Betast+1,ft+1(w) and fY (w) = Betast+1,ft+1(
p
2 + (1− p)w)

Thus instead of picking the arm which has obtained the maximum sample value while sampling
over Y with the arm parameters, we could also sample over X (since its just a linear transformation
and p is constant for all arms) and pick the arm arm in a similar procedure. We are then basically
doing Thompson Sampling!

Task 4

Since our objective is to minimize cumulative regret and not any sort of variance, we could simply
treat bandit arm as a black box and ignore the bandit instance that generated the reward. We then
calculate a belief over the mean rewards of the arms and simply neglect the bandit instance that
generated the reward. We then move to a simple multi-arm bandit problem and choose Thompson
Sampling to minimize average cumulative regret.
In my implementation below, I have used self.sucess and self.failure to count the number of
successes and failures of each of the arms of both the bandit-instances. I finally added the successes
and failures and passed them as arguments to np.random.beta function. My get_reward functions
similar to the one in Thompson Sampling.

7



8


