
CS747-Assignment 2

Vansh Kapoor
200100164

1 Task 1

Value Iteration

For Value iteration, I initialized the the Value function with 0̄ (this initialization is used in both
Howard Policy Iteration as well as Policy Evaluation) and therefore while implementing the Bellman
Optimality Operator for Value iteration, I did not update the value function for terminal states.
My process of application terminates when the difference between Vt and Vt+1 for all state is at
most 10−12. That is, successive application of the Bellman operator continues until:

∥Vt+1 − Vt∥∞ < 10−12

Howards Policy Iteration

For policy evaluation in Howard Policy Iteration, I used successive applications of Bellman operator
instead of matrix inversion as I felt that would lead to faster convergence. Here I switched the actions
for all the states with at least one improvable the actions. The tolerance that I set of value function
evaluation for a policy was similar to that for value iteration which was 10−12.

Linear Programming

In the implementation of Linear Programming, for the terminal states I set their lower and upper
bounds as 0 and for the rest of states I framed the greater than inequality using the Bellman equa-
tion. The objective was to maximize the negative of the sum of the value function variables for all
states.

For episodic MDPs my approach fixes the value function for terminal states as 0 and also
implements self loops with transition probability 1 and reward 0 for terminal states. Other than
this my approach doesn’t differentiate between and episodic and continuing MDPs. In other words,

T (sT , a, sT ) = 1 and T (sT , a, s) = 0 ∀s ∈ S \ {sT },∀a ∈ A

R(sT , a, s) = 0 ∀s ∈ S, ∀a ∈ A

The default algorithm is set to be Value iteration using its tolerance both its accuracy and compu-
tation time can be adjusted to meet the requirements.
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2 Task 2

2.1 MDP Formulation

Encoder

encoder.py uses the states from the state-opponent policy files along with a ”Win” state and a
”Loss” state. I have defined a function pos that when given a player’s position outputs the player’s
position in the next time step according to the 4 movement actions possible (Left, Right, Up,
Down). It outputs the subsequent position if it is legal and −1 if the player moves outside the
grid. My other functions: prob_pass and shoot give the probabilities that a pass/shoot given the
positions of the players and the subsequent position of the opponent.

I iterated over each state in my MDP and updated the transition-probability matrix and the
reward matrix using the outgoing transitions from the current state under consideration. Only
transition to the Win state awards a reward of one. Thus in such a formulation of the MDP, my
Value function of a state is the expected number of goals starting from that state. Here my Win
and Loss are my terminal states, and thus my MDP formulation is episodic.

Planner

The output of encoder.py is used by is used by planner.py to find the optimal policy and Value
Function (using default algorithm - Value iteration) of these 8194 states (8192 states from state-
opponent policy and 2 Win, Loss states).

Decoder

decoder.py uses the state-opponent policy files as a reference to understand the order of optimal
Value functions and actions returned by planner.py. decoder.py ignores the values obtained for
last two states, i.e., Win and Lose state.

2.2 Plots

Figure 1: Variation of Expected Number of Goals with p for q=0.7
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Variation of Value Function with p for fixed q

Figure 2 shows the variation of the expected number of goals with p for q=0.7 for the positions
of the players shown in Figure 1. Consider the case when p=0. There is zero probability of
losing possession of the ball by the movement of either players, unless tackling condition occurs
which can be easily avoided due the initialization condition and due to the known strategy of the
opponent. Therefore the player with the ball can move to the right edge of the grid to maximize
the probability of shoot without losing possession of the ball. Thus for p=0 expected number of
goals is just probability of goal when the player is at the right edge of the grid which is nothing but
p.

Also observe that when p gets closer and closer to 0.5, the probability of losing possession due
to movement of player with the ball → 1. Also though passing probability remains high enough,
passing the ball gives no advantage as both are equally distant from the right edge. Therefore
directly shooting is the optimal move which in fact has a probability of q-0.6 = 0.1 which matches
with our observation!

The intermediate probabilities might indicate optimal play such as: movement of player without
the ball towards the right edge, passing and shooting directly or movement towards the right edge
and then shooting. Intuitively also there should be a rapid decay and then a constant Value function
with p. This is because the value function of the state initially should decrease as probability of
losing possession increases with movement and later the this probability of losing possession crosses
a limit the player changes his policy by directly shooting towards the goal from his current position
whose probability of success is independent of p.

Figure 2: Variation of Expected Number of Goals with p for q=0.7

3



Variation of Value Function with q for fixed p

Figure 3 shows the variation of the expected number of goals with q for p=0.3 for the positions
of the players shown in Figure 1. It is quite predict the increase of Value function and hence the
expected number of goals due to increase in q which determines probability of scoring a goal.

By careful observation we can see a point of discontinuity of derivative at q = 0.8 and a linear
region from q ∈ [0.8, 1]. This probably indicates a shift in policy near q=0.8. From q ∈ [0.8, 1] we
observe that the value function is just q-0.6. This matches our intuition as when the probability
of goal increases, the player instead of taking a risk of losing possession by moving, directly shoots
from his current position.

Whereas when q is near 6, the player’s probability of goal, shooting from the current position
→ 0 and hence he moves towards the goal and then shoots. Intuitively here the Value function
(hence the policy used) is restricted by the small value of q, whereas in the case above the Value
function is restricted sue to the relatively large value of p (losing due to movement)

Figure 3: Variation of Expected Number of Goals with q for p=0.3
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High Level Idea

Firstly, using geometry, I determine the most appropriate angle at which the cue ball should be
struck for a given state in order to maximize the probability of potting a specific ball. To achieve
this, I identify the most suitable pocket for the target ball and calculate the angle at which the
target ball should move to maximize its probability of being potted. Additionally, I identify the
top three balls with the highest likelihood of being potted.

Subsequently, in the given state, I employ decision-time planning through tree search to identify
the most suitable ball to pot and determine the force that should be applied to the ball. When
there is more than one target ball remaining, I limit my tree search to a depth of 1. If only one
target ball remains, then I extend the tree search to a depth of two, which increases the probability
of potting a ball in at most two attempts.

To determine the estimated force to be applied, I calculate the distance between the cue ball
and the target ball, taking into account the provided friction coefficient. I then employ a tree search
to incrementally explore values above this calculated distance in small steps.

I followed a unique approach that utilizes overlap between angle ranges to identify the most
suitable pocket for the target ball which gives excellent results!

Optimal Angle For Cue Ball

def tangent(striker,ball,radius):

d=numpy.sqrt((striker[0]-ball[0])**2 + (striker[1]-ball[1])**2 )

alpha=numpy.arcsin(2*radius/d)

#remove

theta=numpy.arctan((striker[0]-ball[0]+1e-12)/(striker[1]-ball[1]+1e-12))

if(striker[1]<ball[1]):

theta=theta-math.pi

angles=[theta+alpha-(math.pi/2),theta-alpha+(math.pi/2)] #Will have to deal

with [-1.3,-0.7] later↪→

return(angles)

def angle(ball,holes,hole_radius):

t=[]

for i in holes:
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d=numpy.sqrt((ball[0]-i[0])**2 + (ball[1]-i[1])**2 )

alpha=numpy.arcsin(hole_radius/d)

theta=numpy.arctan( (ball[0]-i[0]+1e-12)/(ball[1]-i[1] +1e-12) )

if(ball[1]<i[1]):

theta=theta-math.pi

t.append([theta-alpha,theta+alpha])

return t

The function tangent(striker, ball, radius) provides us with the range of angles representing
the potential motion of the target ball after a collision with the cue ball.I considered a radius of
2 times the target ball’s radius. By utilizing the tangents to this circle from the cue ball, I esti-
mated the range of deflection angles for the target ball from its current position. The output of
tangent(striker, ball, radius) provides us with the min and max values of these angles.

Meanwhile, angle gives us with the range of angles for the velocity required for the target ball
to be potted in each hole from a list of holes with a radius of hole_radius. The hole_radius is
implemented in a similar manner to tangent(striker, ball, radius), where the radius here is
equivalent to the hole radius. In this case, the output is a list whose length corresponds to the
number of holes. Each element of the list provides the min and max angles at which the target ball
could be potted in a specific hole.

I now find the top three balls with the maximum amount of overlap between these two ranges
of angles, i.e., the range of angles for the velocity required for the target ball to be potted and the
range of angles representing the potential motion of the target ball.

My input cue ball angle is the mean angle of the overlap angle. This provides robustness
to the Gaussian Noise added. By providing this robustness, the algorithm performs well even
in cases of decently high noise variance.

def control(theta,str,ball,radius):

new=[]

new.append(ball[0]+2*radius*math.sin(theta))

new.append(ball[1]+2*radius*math.cos(theta))

ang=numpy.arctan( (str[0]-new[0]+1e-12)/(str[1]-new[1]+1e-12 ) )

if(str[1]<new[1]):

ang=ang-math.pi

return ang

The above function control gives the angle at which the cue ball has to be struck for a given
desired angle theta for the target ball.

def overlap(ang1,ang2): #send striker angles in ang1

section1=[]

section2=[]

a1=ang1

len1=0

len2=0

for i in range(2):
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ang1[i]=ang1[i]%(2*math.pi)

ang2[i]=ang2[i]%(2*math.pi)

if ang1[0]<ang1[1]:

s11=ang1

s12=[]

else:

s11=[ang1[0],2*math.pi]

s12=[0,ang1[1]]

if ang2[0]<ang2[1]:

s21=ang2

s22=[]

else:

s21=[ang2[0],2*math.pi]

s22=[0,ang2[1]]

if(len(s12)==0 and len(s22)==0):

if (s11[0]< s21[1] and s21[0]<s11[1]):

section1= [max(s11[0],s21[0]),min(s11[1],s21[1])]

elif(len(s12)==0 and len(s22)==2):

if (s11[0]< s21[1] and s21[0]<s11[1]):

section1= [max(s11[0],s21[0]),min(s11[1],s21[1])]

elif (s11[0]< s22[1] and s22[0]<s11[1]):

section1= [max(s11[0],s22[0]),min(s11[1],s22[1])]

elif(len(s12)==2 and len(s22)==0):

if (s11[0]< s21[1] and s21[0]<s11[1]):

section1= [max(s11[0],s21[0]),min(s11[1],s21[1])]

elif (s12[0]< s21[1] and s21[0]<s12[1]):

section1= [max(s12[0],s21[0]),min(s12[1],s21[1])]

else:

section1= [max(s11[0],s21[0]),2*math.pi]

section2= [0,min(s22[1],s12[1])]

if len(section1)!=0 :

len1=section1[1]-section1[0]

if len(section2)!=0:

len2=section2[1]-section2[0]

ovrlp=len1+len2

if ovrlp==0:
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return 0,(a1[0]+a1[1])/2

elif len2==0:

return ovrlp,(section1[1]+section1[0])/2

else:

return ovrlp,(section1[0]+section2[1]+2*math.pi)/2

The above function gives us the range value of overlap between two intervals of angles. This
function implementation is not so trivial due since we are considering there is a wrap around at 2∗π.
The output also provides us the mean angle of the overlap, which gives us the angel of deflection
of the target ball after collison with the cue ball.

Decision Time Planning Under Uncertainty

We use decision time planning using tree search to find the optimal angle due to noisy angle
input to the cue ball. This method is very effective in-case of releasing information regarding the
optimal action in case of uncertainty.

I limit my tree search to a depth of one initially, exploring a range of forces for a given input angle
to the cue ball, calculated as described in the previous section. By iterating over 2-3 episodes, I
greedily choose my force.

However, when only one target ball remains, I extend the tree search to a depth of two. This
extension enhances the likelihood of successfully potting the ball within just two attempts. This
proved to be quite useful especially in edge cases where none of the actions could result in the ball
being potted. I discounted the reward obtained in the future time-step by a factor of 0.25. Thus,
by utilizing and discounting the future time-step reward, I established an effective policy for
the cue ball.

for jj in range(len(array_1)):

r=numpy.random.randint(1,100)

next_state2=self.ns.get_next_state(next_state,

(best_angle_1, array_1[jj]), r)↪→
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sum+=(len(next_state)-len(next_state2))*0.25

if((len(next_state)-len(next_state2))==1):

break

Parameter Tuning For Finding Force

if maxim==3:

c1=0.2

c2=8

c3=0.05

k=3

for i in range(maxim):

bst_ball=ball_pos[new[i,2]] #hole[bst,2] is a key always

bst_hole=self.holes[int(new[i,1])]

possible_angles=tangent(striker,bst_ball,ball_radius) #actual

d=(dist(bst_ball,striker)/115.34)*0.1+c1

I spent a considerable amount of time fine-tuning the parameters for the ranges of forces applied to
the tree search algorithm. Initially, I utilized the friction coefficient value provided in config.py.
I calculated the distance achievable by applying a force of 0.1 to the cue ball, which resulted in a
distance of approximately 116 units for the given friction coefficient. I determined the minimum
force required for the cue ball to cover the distance between itself and the target ball. I iterated
over a finite number of values with small incremental steps in force.

My intermediate experiments that made be realize the importance of tree search, specifically
the advantage of tree search for a depth of two when only a single target ball is remaining. Using
a depth of two proved to be quite advantageous since the cue ball took an action that had very
high probability of potting the single target ball in at max two tries.

The geometry approach followed by me gave be a considerable advantage in selecting the best
balls as well the appropriate angle of collisions for the cue ball. I used decision time planning, which
involved parameter tuning only to find the appropriate force input for the cue ball. I considered
steps of size 0.05 for force with the starting value as
(min force to reach the target ball) + (margin=0.2) +(step size)∗iter
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