EE-782 : Advanced Topics in Machine Learning
Deep Recurrent Q-Learning for Partially Observable
Markov Decision Processes

Vansh Kapoor

Sankalp Bhamare

Department of Electrical Engineering Department of Electrical Engineering

Rohan Rajesh Kalbag

Department of Electrical Engineering

Indian Institute of Technology Bombay Indian Institute of Technology Bombay Indian Institute of Technology Bombay

Mumbai, India
200100164 @iitb.ac.in

Abstract—This project presents our unique implementation of
Deep Recurrent Q-Learning (DRQL) that incorporates Transfer
Learning for feature extraction, a customized LSTM for tem-
poral recurrence, and a domain-informed reward function. This
tailored approach aims to expedite convergence compared to the
vanilla implementation outlined in the original paper. The per-
formance evaluation focuses on two adaptive Atari 2600 games:
Assault-v5 and Bowling, where game difficulty scales with player
proficiency. Comparative analysis between the convergence of our
optimized reward function and the vanilla version is conducted
using StepLR and CosineAnnealingL.R learning rate schedulers,
complemented by theoretical explainations. Additionally, an ef-
ficient windowed episodic memory implementation employing
bootstrapped sequential updates is proposed to optimize GPU
memory utilization.

Index Terms—Bootstrapping, Deep Recurrent Q-Learning,
Flickering Atari Games, LSTM, OpenAl Gymnasium, Partially
Observable Markov Decision Processes, Transfer Learning

I. INTRODUCTION
Deep Q-networks: Undebated Queen for Deep RL

Deep Q-networks (DQNs) represent powerful frameworks
for dynamically learning optimal policies in sequential deci-
sion processes characterized by a large number of states and
actions. They achieve this by employing neural network-based
feature extractors that leverage the property of state general-
ization, meaning that similar states share similar optimal value
functions. DQNs utilize this property to generalize across
states, allowing for effective learning and decision-making in
complex environments with a multitude of possible states and
actions.

DQNs have demonstrated their capability to acquire control
policies at a level comparable to human performance across
various Atari 2600 games. By learning policies that map
directly from raw screen pixels to actions, these networks
have consistently achieved state-of-the-art performance across
a wide range of Atari 2600 games.

Why Deep Recurrent Q-networks?

However, Deep Q-Networks are limited in the sense that
they learn a mapping from a limited number of past states,

Mumbai, India
200110096 @iitb.ac.in

Mumbai, India
20d170033 @iitb.ac.in

State S —>| Q Network

Q(s, a; 0)

6 updates 8' every C timesteps

\ 4

stateS —> Target Network Q'(s', a"; 9

Loss = (r + y.max(Q'(s, a; 8)) - Q(s, a; 0))?

Fig. 1. Double Q-Networks

or game screens in the case of Atari 2600. In practice, DQN
is trained using an input consisting of the last four states the
agent has encountered. The game that requires a memory of
more than four frames don’t just depend on more than just
DQN’s current input, the process is non-Markovian. Instead
of a Markov Decision Process (MDP), the game becomes
a Partially-Observable Markov Decision Process (POMDP).
There is however no notion of temporal recurrence in DQNs,
and they do not work very efficiently in non-Markovian
behaviour.

Real-world tasks often involve incomplete and noisy state
information due to partial observability, this is seen in Atari
2600 games, given only a single screen, manifest as POMDPs.
The efficacy of reinforcement learning can be improved by
intoducing temporal recurrence in the form Recurrent-Neural-
Networks. In the paper [1f], the authors introduce Deep Recur-
rent Q-Network, a fusion of LSTM and a Deep Q-Network

II. INNOVATIVE MODIFICATIONS IMPLEMENTED

1) The proposal of a modified reward function incorpo-
rating a combination of Q-learning loss and episode
duration, frequency of firing the weapon

2) The application of Cosine Annealing for learning rate
scheduling aids the agent in adapting to the escalating
difficulty across different levels in the gameplay.

3) The introduction of a windowed implementation for
Episodic Memory, serving as input to the LSTM part of
the double Q-learning network, for optimized memory
utilization in the GPU.

4) Implemented Transfer-Learning by using ResNet-18
pretrained on ImageNet Transfer-Learning for image
feature extractors which speeds up convergence

IIT. PROBLEM FORMULATION

The Atari arcade games are iconic forerunners in the
realm of video gaming, that serve as enduring benchmarks
for evaluating advanced reinforcement-learning algorithms.
We implemented Recurrent Q-Learning on two such games:
Assault-vS & Bowling. We employ LSTMs to capture state
information, such as the velocity of the cannon in Assault V-
5, by leveraging the temporal information embedded in the
hidden state within the LSTM.

A. Assault V-5

o This game starts with an alien mother ship, that cannot
be destroyed continually generating alien minion ships.

o There is a ground cannon which fires but with limited ca-
pacity, i.e., it cannot fire continuously due to overheating

o The cannon has a discrete action space of size seven and
obtains a reward for destroying minion ships. It also has
three lives which can be lost either by getting shot by
alien ships or by overheating.

Fig. 2. A frame from the famous Atari Assault v-5 game

B. Bowling

o A Atari 2D bowling simulator game, with the goal to
achieve the highest possible score by knocking down ten

“pins.” You have two attempts to knock down the pins
during each turn, and there are a total of ten turns in each
episode.

o The available actions for the agent are depicted in the
where arrows indicate the direction for throwing
the ball.

Fig. 3. A frame from the famous Atari Bowling game

<--- NEUTRAL>

Back

Fig. 4. Bowling Agent Actions

IV. APPROACH

Here we use Transfer-Learning by utilizing a ResNet-18
model as a feature extractor to get the state embedding. We
utilize this embedding and pass it on to a Q-network. Q-
Learning is a model-free off-policy algorithm for estimating
the long-term expected return of executing an action from a
given state. These estimated returns are known as Q-values.
We utilize an e greedy strategy to generate episodes and

Q-Values 7 18

LSTM 4

7

wn
(S8}

Conv3
64-filters 64
3Ix3

Stride 1

—N\

Conv2 =
64-filters

4x4 64
Stride 2

N

!

Convl
32-filters
8x8
Stride 4

Fig. 5. LSTM-based Recurrent Deep Q-Learning

perform a Double Deep Q-Learning update based on the
rewards given to us by the game-play environment.

Qo) = Qo)+ (7 1mx Qon.a0) — Qo)

We initially perform a square root decay for the exploration
factor € to perform sufficient exploration during the initial
iterations. We later perform a geometric decay to speed-up
convergence to a purely greedy strategy.

A. Domain Knowledge for Reward Function Implementation

We utilize our domain knowledge, i.e., strategies based on
the general human-play to allocate rewards to our agent. Here
we utilize Vanilla Q-Learning loss, frequency of shooting and
game-play time (episode length). This helps agent to survive
in the game for longer time by preventing overheating due to
continuous firing and also helps the agent select the ”shooting”
action only when necessary. Hence by training on domain
knowledge-based strategies, the agent tries to outperform
human game play.

B. Rolling Window Optimization for Memory

The approach adopts the Sliding Window Optimization
technique. Exploiting the principles of Long Short-Term Mem-
ory (LSTM) operations, the results from prior timestamp
computations are applied to subsequent time steps. Specifi-
cally, computations for all frames, excluding the current one
(WINDOW_SIZE — 1 frames), are reused, resulting in
an overall performance gain of x WINDOW _SIZE. This
method achieves significant memory savings, as deep memory
instances now preserve a sequential role of frames rather than

the entire window for each instance. Computed dynamically
for each inference, this strategy not only optimizes computa-
tions but also conserves memory resources effectively.

V. RESULTS

A. Assault V-5
Vanilla Rewards

Because the agent receives rewards solely based on its score,
it explores a range of strategies in each episode, refining its
approach through trial and error during policy improvement
steps. As the agent lacks any incentives beyond the final score,
the convergence towards the optimal policy occurs gradually.
This slow convergence might require thousands of iterations
to effectively beat strategies resembling those employed by
humans.

Our Approach: Crafted Rewards
clearly demonstrates that the performance

attained by the agent, utilizing rewards designed by us,
significantly surpasses the performance achieved using vanilla
rewards across both types of learning rate scheduling. In
our approach, we craft rewards to encourage optimal firing
frequency (preventing overheating), prolonging gameplay,
and initiating horizontal motion only when necessary. This
introduces human-based gameplay rewards, incentivizing
the agent to emulate human gameplay and enhance it through
Q-Learning.

Performance Score Variation over Episodes : Assault-v5

— Reward

Moving Average of Reward
600 -

- fIN T
Al TR

Reward

300 A
M
200 v
0 20 40 60 80 100 120 140

100 1
Episode Number

Fig. 7. Performance of RL Agent with iterations for Assault-v5

From we verify that our strategy indeed facilitates
faster convergence: initially, the agent rapidly learns human-
style gameplay, then refines this approach through Q-Learning
updates to attain the optimal policy. Additionally, our obser-
vations indicate that cosine-annealing leads to superior long-
term performance. As the gameplay difficulty escalates with
the agent’s improved performance, reverting to a previously
higher learning rate aids the agent in achieving optimal
performance under heightened difficulty levels

Comparing Performance of Various Implementations

—— Crafted Reward (StepLR)

Wanilla Reward (StepLR)
—— Crafted Reward (CosineAnnealingLR)
—— Vanilla Reward (CosineAnnealingLR)

30 35 40

Episode Number

Fig. 6. Performance Evaluation of our Proposed Approach

B. Bowling V-5

Observing reveals that employing Vanilla rewards
alongside the CosineAnnealing LR enhances the agent’s per-
formance but results in slower convergence for the same
reasons outlined for Assault V-5.

70 4

[1]

(2]

Performance Variation Over Episodes : Bowling-v5

— Reward

. ﬁ/\ﬂ/\\/\ /\ /\

Moving Average of Reward

T T T T T T T T T
o] 5 10 15 20 25 30 35 40
Episode Number

Fig. 8. Performance of RL Agent with iterations for Bowling

REFERENCES

M. J. Hausknecht and P. Stone, “Deep recurrent
g-learning for partially observable mdps,” CoRR,
vol. abs/1507.06527, 2015. arXiv: 1507.06527. [Online].
Auvailable: http://arxiv.org/abs/1507.06527.

H. van Hasselt, A. Guez, and D. Silver, “Deep re-
inforcement learning with double g-learning,” CoRR,
vol. abs/1509.06461, 2015. arXiv: 1509.06461. [Online].
Available: http://arxiv.org/abs/1509.06461.

B. Bakker, “Reinforcement learning with long short-term
memory,” in Advances in Neural Information Processing
Systems, T. Dietterich, S. Becker, and Z. Ghahramani,
Eds., vol. 14, MIT Press, 2001. [Online]. Available: https:

(4]

(51

//proceedings . neurips . cc/paper_files/paper/2001/file/
a38b16173474ba8b1a95bcbc30d3b8aS-Paper.pdf.

X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang,
“Deep learning for real-time atari game play using of-
fline monte-carlo tree search planning,” in Advances in
Neural Information Processing Systems, Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K. Weinberger,
Eds., vol. 27, Curran Associates, Inc., 2014. [Online].
Available: |https://proceedings . neurips . cc/paper_files/
paper/2014/file/8bb88f80d334b1869781beb89t7b73be -
Paper.pdf.

A. Agarwal, S. M. Kakade, J. D. Lee, and G. Ma-
hajan, “Optimality and approximation with policy gra-
dient methods in markov decision processes,” CoRR,
vol. abs/1908.00261, 2019. arXiv: |1908.00261. [Online].
Available: http://arxiv.org/abs/1908.00261.

https://arxiv.org/abs/1507.06527
http://arxiv.org/abs/1507.06527
https://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1509.06461
https://proceedings.neurips.cc/paper_files/paper/2001/file/a38b16173474ba8b1a95bcbc30d3b8a5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/a38b16173474ba8b1a95bcbc30d3b8a5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/a38b16173474ba8b1a95bcbc30d3b8a5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/8bb88f80d334b1869781beb89f7b73be-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/8bb88f80d334b1869781beb89f7b73be-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/8bb88f80d334b1869781beb89f7b73be-Paper.pdf
https://arxiv.org/abs/1908.00261
http://arxiv.org/abs/1908.00261

	Introduction
	Innovative Modifications Implemented
	Problem Formulation
	Assault V-5
	Bowling

	Approach
	Domain Knowledge for Reward Function Implementation
	Rolling Window Optimization for Memory

	Results
	Assault V-5
	Bowling V-5

