
Improving Text to Image Models using Semantic Understanding

Team Sarovar

August 26, 2024

1 Introduction

The major limitations of text-to-image generators are semantic understanding and common-sense reasoning. That
is, input prompts that are too simple and not concise lead to low-quality image generation. We attempt to match
this semantic representation of these simple narrative prompts to complex prompts via the use of LLMs, facilitating
the SUR adapter to acquire powerful semantic understanding and reasoning capabilities.

Although CLIP is a powerful model for capturing the underlying image and text relations, it requires complex and
detailed prompting for good results. This is because text-image tasks not only require understanding the semantics
of the text but also figuring out the implicit information and knowledge grounded in the text. The CLIP encoder
fails in all three common categories of text prompts in multi-modal visual question answering: “counting,” “color,”
and “action.” Our obtained results, as shown below, also confirm the claim made.

(a) A collection of seven vintage glass bottles in di↵erent

shapes and sizes, arranged on a windowsill (b) Five dogs

Figure 1: Results Obtained from Realistic Vision V2.0

2 Dataset

Each sample of the Dataset consists of a simple narrative prompt, its corresponding complex prompt and high
quality image.

1

Do You Get My Drift?

(a) Simple Prompt (b) Complex Prompt (c) Inference by LLM

Figure 2: Glimpse of the Dataset

3 Reference Implementations

• SUR Adapter Github Repo

• Ella GitHub Repo

3.1 SUR Model Architecture

Figure 3: Model Architecture

The Architecture consists of two trainable neural networks gAda, g and with parameters �1 and �2

1. Adapter

• Adapter:
gAda(fEn(pis);'2) = V 0

i + Vi + h1[V
0
i + Vi], (1)

where Vi = fEn(pis) and V 0
i = Vi ⌦ atti.

• The output of the adapter is transformed using g(·;'1), therefore:

g(gAda(fEn(pis);'2);'1) = g(V 0
i + Vi + h1[V

0
i + Vi];'1), (2)

• Semantic information input to the predictor:

c0LLM = ⌘ cLLM + (1� ⌘) · fEn(p
i
s). (3)

2. • Final Loss function is given by:

ltotal(�) = �1 · lLLM(�) + �2 · lCP(�) + lsimple
t (�)

Page 2

https://github.com/Qrange-group/SUR-adapter
https://ella-diffusion.github.io/

Do You Get My Drift?

• The intermediate loss expressions areas follows:

`CP(�) = KL

✓
c0LLM
⌧

,
fEn(pic)

⌧

◆

`LLM(�) = KL

W0fLLM(pis)

⌧
,
Qi

⌧

�

3.2 Plausible Explorations

1. Adaptive Improvement to Prompt: One important point to note is that ⌘ doesn’t vary based on the
input. Therefore, irrespective of the comprehensiveness of the input, a fixed convex combination of fEn and
⌘⇥ cLLM is always used to aid our prompt. This may be an inhibiting factor if our prompts are well-detailed
or the Adapter network is not very well trained. We plan to tackle this by making the factor ⌘ learnable,
adding an additional fully connected network (FCN) which takes as input the text embedding. This allows
the architecture to adapt to the text prompt.

2. Retrieval-Augmented Generation: Using RAG we plan, to provide additional information to the LLM
base prompts while performing knowledge distillation, prompts like draw image of Narendra Modi, will get
translated to “Gujarati Guy, White Beard, White Complexion, Old Person, Specs”.

3. Multi-LLMs Knowledge Distillation There is a KL Distillation loss term involved in the final loss
expression. A possible improvement could be to use multiple LLMs to further enhance the text encoder
by introducing a KL distillation loss term for each LLM and appropriately weighing them based on the
superiority of each LLM.

Note: During learning we freeze all the LLM parameters, the text encoder, the predictor in the pre-trained
di↵usion model.

4 Experimental Results

The following SUR Adapter results are shown on pre-trained weights published by the authors on ⌘ = 0.01. Our
obtained results with increasing training steps are as shown below. For the code implementation, refer to the
collab notebook available

4.1 Action Category

(a) Stable Di↵usion Model (b) SUR Adapter

Figure 4: Action Category: A chef tossing a pizza dough in the air in a kitchen

Page 3

Do You Get My Drift?

4.2 Colour Category

(a) Stable Di↵usion Model (b) SUR Adapter

Figure 5: Color Category: A couple wearing blue and yellow solid color clothes

4.3 Counting Category

4.4 Simple Prompts

We also conducted a few experiments on simple prompts such as “beautiful cat” to test whether there is any
improvement in the semantic understanding of the SUR model compared to that of stable di↵usion models with
simple and complex prompts. However, we were unable to observe any significant change and have displayed the
obtained results below:

(a) Stable Di↵usion Model (b) SUR Adapter

(c) Stable Di↵usion Model using com-

plex prompt

Figure 7: Simple Prompts for testing improvement in semantic understanding

4.5 Results Obtained Training

We trained the SUR Adapter with a default value of ⌘ = 0.1, but the results obtained were completely bogus even
after 5000 training steps. Our obtained results with increasing training steps are as shown below. For the code
implementation, refer to the collab notebook available here.

Page 4

https://colab.research.google.com/drive/1jKKESXehlbrOOl9KbQzW4wPc3H4Y-djb?usp=sharing

Do You Get My Drift?

(a) “Four dogs” by Stable Di↵usion Model (b) “Four dogs” by SUR Adapter

(c) “Five dogs” by Stable Di↵usion Model (d) “Five dogs” by SUR Adapter

(e) “Six dogs” by Stable Di↵usion Model (f) “Six dogs” by SUR Adapter

(g) Stable Di↵usion Model results for seven vintage bot-

tles (h) SUR Adapter results for seven vintage bottles

Figure 6: Counting Category: (a) “Four dogs” (b) “Five dogs” (c) “Six dogs” (d) A collection of seven vintage
glass bottles in di↵erent shapes and sizes, arranged on a windowsill

Page 5

Do You Get My Drift?

(a) 1000 training steps (b) 2000 training steps (c) 5000 training steps

Figure 8: Generated images with varying training steps for the prompt: “An aristocratic maiden in medieval attire
with a headdress of brilliant feathers”

5 Proposed Project

5.1 Understanding the Drawbacks of SUR

The architecture proposed in the SUR paper demonstrates poor practical performance, as none of the paper’s
claims were substantiated in either the pretrained weights provided by the authors or in our own model trained
with significant iterations. Our investigation revealed several key factors contributing to the ine�ciency of the
aforementioned architecture:

• The custom SUR dataset developed by the authors lacks adequate quality; many instances lack a discernible
relationship between the simple prompt and the complex prompt, resulting in subpar image generation. This
highlights unrealistic expectations for SUR to comprehend and execute such tasks e↵ectively.

• The training methodology employed for SUR, particularly the integration of LLM knowledge distillation,
appears ine↵ective in imbuing the extensive knowledge of LLMs into the SUR adaptor. Only the hidden state
output of the LLM is encoded into a format compatible with CLIP via an untrained linear transformation,
without a provided rationale or plausible explanation for why a random matrix multiplied by the LLM hidden
state would accurately capture LLM information.

• The utilization of KL loss for distillation implementation seems intuitively incorrect, a sentiment further
validated by our experimental results.

• The suggested low value of ⌘, the influence parameter of SUR by the authors, diminishes the impact of SUR
on the conditioning of the U-Net, thereby hindering its e↵ectiveness.

5.2 Proposed Changes

Now to fix the SUR adapter and generate results that are an improvement over the existing State of the Art(SoTA)
text to image di↵usion model runwayml/stable-diffusion-v1-5, we propose the following modifications: Now,
to enhance the performance of the SUR adapter and produce results surpassing the existing State of the Art (SoTA)
text-to-image di↵usion model runwayml/stable-diffusion-v1-5, we propose the following modifications:

• Dataset: Although the task may appear straightforward, it proves to be rather challenging. SoTA text-to-
image models are trained on diverse and extensive datasets, enabling them to generalize well across various
domains. This implies that employing simplistic (Text, Image) pairs does not train the SUR adapter,
mainly results in SUR adapter learning identity transform. Instead, we advocate for a dataset where the
prompts are exceptionally simple yet attempt to convey complex images. Our exploration led us to the
pokemon-llava-captions dataset, depicted in Figure 9. Notably, this dataset features images with diverse
themes and simple prompts, requiring the SUR adapter to infer complex attributes from straightforward
prompts and adapt to various thematic contexts.

• Knowledge Distillation: The previous knowledge distillation process was ine↵ective due to the flawed
construction of the loss function. In our proposed revised methodology, we suggest a modified approach.
Firstly, instead of solely utilizing the hidden state of the LLM, we advocate for extracting the entire inference
from the LLM. Additionally, we employ prompt engineering techniques to enhance the quality of the output.
This approach not only ensures the presence of LLM knowledge verbatim but also facilitates subsequent

Page 6

Do You Get My Drift?

stages. Encoding the LLM’s inference using the CLIP encoder yields the complex prompt embedding,
aligning both in the same domain, which is crucial for designing an e↵ective loss function.

• Loss Function: Employing KL divergence on the embeddings of the LLM linearly transformed into the CLIP
encoder’s output domain has proven ine↵ective for model evaluation. Consequently, with the aforementioned
modifications, both the complex and simple prompts are encoded into the same space. Hence, constructing
cosine similarity-based losses provides a more robust methodology for model evaluation and training.

• Adaptive ⌘: To address this, we propose a straightforward solution. Initially, during testing, we employ a
large value to allow SUR to influence the conditioning of the U-Net. Subsequently, we propose a modification
that enables adaptive influence, adjusting based on the prompt complexity. For instance, simple prompts
would entail higher influence, whereas detailed prompts would entail lesser influence, providing users with
greater control.

Figure 9: Sampled instances from the pokemon-llava-captions dataset.

6 Dataset

As described before, the conditional U-Net is di�cult to train, and therefore a lightweight solution is to enhance
the conditioning of the U-Net, through the text embedding, this as experimented, not only improves the output
image but also helps it adapt to images of di↵erent domains, like in our case where it adapts to the Pokémon
theme! Essentially, when we trained on the llava dataset, we were learning the anime themes and terminology, and
by using simple prompts we were able to generate good quality results.

Page 7

Do You Get My Drift?

7 Loss Function

Table 1: Comparison of Cosine Loss and Distillation Loss

Text 1 Text 2 Cosine Loss Distillation Loss
Hello! How are you? Hi, How your doing 0.144 147.963
Hello! How are you? Bye! Mom where are you going 0.501 183.568
Hello! How are you? White tiger and blue elephant 0.644 83.317
Hello! How are you? Horse on the moon 0.603 68.026
Hello! How are you? Donkey in Mars 0.608 72.141
Hello! How are you? Violet lion and green donkey 0.646 81.022
Hello! How are you? Purple cheetah and yellow hippo 0.658 87.245
Hi, How your doing Bye! Mom where are you going 0.518 41.167
Hi, How your doing White tiger and blue elephant 0.666 145.305
Hi, How your doing Horse on the moon 0.617 123.277
Hi, How your doing Donkey in Mars 0.625 115.777
Hi, How your doing Violet lion and green donkey 0.684 151.838
Hi, How your doing Purple cheetah and yellow hippo 0.668 145.109
Bye! Mom where are you going White tiger and blue elephant 0.780 179.967
Bye! Mom where are you going Horse on the moon 0.700 167.846
Bye! Mom where are you going Donkey in Mars 0.709 145.205
Bye! Mom where are you going Violet lion and green donkey 0.783 169.383
Bye! Mom where are you going Purple cheetah and yellow hippo 0.786 153.516
White tiger and blue elephant Horse on the moon 0.620 48.909
White tiger and blue elephant Donkey in Mars 0.722 58.681
White tiger and blue elephant Violet lion and green donkey 0.487 37.402
White tiger and blue elephant Purple cheetah and yellow hippo 0.539 45.276
Horse on the moon Donkey in Mars 0.306 22.842
Horse on the moon Violet lion and green donkey 0.591 48.885
Horse on the moon Purple cheetah and yellow hippo 0.703 58.616
Donkey in Mars Violet lion and green donkey 0.560 45.688
Donkey in Mars Purple cheetah and yellow hippo 0.745 58.434
Violet lion and green donkey Purple cheetah and yellow hippo 0.471 34.948

The loss function suggested in the paper was KL divergence loss to align the semantic representation of simple
prompts to the complex prompts and transfer knowledge of large language models (LLMs) to the SUR-adapter
via knowledge distillation. As we can observe from the table, KL divergence loss isn’t quite e↵ective in capturing
the similarity between text embeddings and, in fact, to some extent quite random. On the other hand, we observe
that the Cosine loss captures the similarity in the semantic meaning of the prompts (e.g., 1st entry in the table).
We even confirm this by utilizing Cosine Similarity loss for aligning the embeddings.

7.1 Cosine Loss Function

One rationale for implementing this loss function is to compute the average along each dimension of the word
embedding. This process can be likened to calculating the mean word1, subsequently normalizing and comparing
them, and penalizing the di↵erences, thereby assessing dissimilarity.

def Cos_loss(llama_embeddings, llama_embeddings_1):
clip_text_embedding1_avg = torch.mean(llama_embeddings, dim=1)
clip_text_embedding2_avg = torch.mean(llama_embeddings_1, dim=1)

Normalize the embeddings
clip_text_embedding1_normalized = torch.nn.functional.normalize(clip_text_embedding1_avg, p=2, dim=1)
clip_text_embedding2_normalized = torch.nn.functional.normalize(clip_text_embedding2_avg, p=2, dim=1)

Calculate cosine similarity loss
similarity_loss = 1-cosine_similarity(clip_text_embedding1_avg, clip_text_embedding2_avg)
return similarity_loss

1Vector in the embedding space representing the sentence’s meaning

Page 8

Do You Get My Drift?

8 Final Results for Our Modified SUR Adapter

We observe that the images are more accurate for the case of the SUR adapter and the images become more
cartoonish as we increase the number of training steps.

8.1 Color Analysis

(a) Clip Stable Di↵usion Model (b) SUR Adapter 3000 steps

(c) SUR Adapter 4000 steps (d) SUR Adapter 5000 steps

Figure 10: Analysis of results for the prompt: “A vibrant butterfly with iridescent wings in shades of blue, green,
and purple, perched on a bright pink flower”

(a) Best Picture For Clip Stable Di↵usion Model (b) SUR Adapter 4000 steps

Figure 11: Analysis of results for the prompt: “The blue glass containing red juice”

Page 9

Do You Get My Drift?

8.2 Action Category Analysis

(a) Best Picture For Clip Stable Di↵usion Model (b) SUR Adapter 3000 steps

(c) SUR Adapter 4000 steps

Figure 12: Analysis of results for the prompt: “A chef tossing a pizza dough in the air in a kitchen”

(a) Best Picture For Clip Stable Di↵usion Model (b) SUR Adapter 4000 steps

Figure 13: Analysis of results for the prompt: “Gira↵es eating trees”

Here once again, our modified SUR adapter’s performance is comparable to the best performance of the Clip
di↵usion model with respect to the random seed. Here we once again observe that

Page 10

Do You Get My Drift?

8.3 Comparison using Complex Prompts With Best Clip Results

(a) ”Three flu↵y white kittens playing with a ball of

yarn on a bright green carpet” (b) SUR Adapter Results

(c) “A collection of seven vintage glass bottles in di↵er-

ent shapes and sizes, arranged on a windowsill” (d) SUR Adapter Results

(e) “An aristocratic maiden in medieval attire with a

headdress of brilliant feathers” (f) SUR Adapter Results

Figure 14: Analysis of Complex Prompts

Here we observe for (b) that the ball of yarn is also white and in fact the same color as that of the cat. This is a
clear example for attribute leaking, where attributes specified in the prompt are correctly bound but some other
elements in the scene are also wrongly bound with this attribute.

Page 11

Do You Get My Drift?

8.4 Pokemon Comparison for Fun!

We conducted an evaluation of the model using a selection of sample Pokémon prompts. For instance, prompts
included descriptions such as “a yellow rabbit with red cheeks, long ears, and zig-zag tails.” Here are the results
obtained for various Pokémon prompts.

(a) Pikachu (b) Pikachu by SUR

(c) Charizard (d) Charizard by SUR Adapter

(e) Greninja (f) Greninja by SUR Adapter

Figure 15: Analysis on Pokemon prompts

Page 12

Do You Get My Drift?

9 Analysis of New Loss

(a) “A golden sun setting over a calm ocean, with orange

and pink hues appearing in the sky”

(b) “A gymnast performing a balance beam routine with

graceful flips and twists”

(c) “A skateboarder doing a kickflip over a set of stairs” (d) Pikachu by SUR (New Loss)

def Cos_loss(llama_embeddings, llama_embeddings_1):
clip_text_embedding1_avg = torch.mean(llama_embeddings, dim=1)
clip_text_embedding2_avg = torch.mean(llama_embeddings_1, dim=1)

Normalize the embeddings
clip_text_embedding1_normalized = torch.nn.functional.normalize(clip_text_embedding1_avg, p=2, dim=1)
clip_text_embedding2_normalized = torch.nn.functional.normalize(clip_text_embedding2_avg, p=2, dim=1)

Calculate cosine similarity loss
similarity_loss = 1-cosine_similarity(clip_text_embedding1_avg, clip_text_embedding2_avg)
return similarity_loss

The above function tries to compute the “distance” between two embeddings by calculating the cosine embedding
loss after normalizing over all 77 words.

Page 13

Do You Get My Drift?

10 ELLA Adapter

During our project, we encountered an intriguing corporate research endeavor by Tencent2, introducing innovative
concepts distinct from conventional methods. They propose an adapter that maps text embedded with powerful
models like T5, utilizing custom adapters to generate conditioning for conditional U-Net. In contrast to the SUR
adapter, their plan involves replacing the entire CLIP encoder with a custom pipeline and introducing a novel
adapter named Timestep-Aware Semantic Connector. This adapter dynamically extracts timestep-dependent con-
ditions from the LLM to condition the U-Net network, providing varied conditioning throughout the denoising
process. This fine-tuned control empowers the text-to-image model to produce superior results. Majority of di↵u-
sion models currently rely on CLIP as their text encoder, limiting their ability to comprehend dense prompts. In
this paper, we introduce the E�cient Large Language Model Adapter (ELLA), enhancing Semantic Understanding
and Reasoning (SUR) capabilities by integrating powerful LLMs without needing to train either the U-Net or the
LLM.

(a) “An aristocratic girl in medieval finery and a head-

dress of bright feathers drinking afternoon tea” (b) Our ELLA Results

(c) ”Three flu↵y white kittens playing with a ball of

yarn on a bright green carpet” (d) Our ELLA Results

(e) “A vibrant butterfly with iridescent wings in shades

of blue, green, and purple, perched on a bright pink

flower” (f) Our ELLA Results

Figure 17: Analysis of ELLA on Complex Prompts

2Developers of PUBG

Page 14

Do You Get My Drift?

From the above figure, we observe that not only do all of the images generated by the prompts become animated
(f) exactly looks like the Pokemon Butterfree!), but also the semantic understanding of the model enhances
significantly. In the original di↵usion model, the action of drinking tea is absent in (a), a counting error and the
action of playing with yarn are missing in (c), but these errors are rectified in our results.

(a) Pikachu by ELLA (b) Charizard by ELLA

(c) Greninja by ELLA

Figure 18: Pokemon Generation by Ella

Page 15

	Introduction
	Dataset
	Reference Implementations
	SUR Model Architecture
	Plausible Explorations

	Experimental Results
	Action Category
	Colour Category
	Counting Category
	Simple Prompts
	Results Obtained Training

	Proposed Project
	Understanding the Drawbacks of SUR
	Proposed Changes

	Dataset
	Loss Function
	Cosine Loss Function

	Final Results for Our Modified SUR Adapter
	Color Analysis
	Action Category Analysis
	Comparison using Complex Prompts With Best Clip Results
	Pokemon Comparison for Fun!

	Analysis of New Loss
	ELLA Adapter

